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SUMMARY

Non-classical large eddy simulation (LES) approaches based on using the un�ltered �ow equations
instead of the �ltered ones have been the subject of considerable interest during the last decade. In
the monotonically integrated LES (MILES) approach, �ux-limiting schemes are used to emulate the
characteristic turbulent �ow features in the high-wave number end of the inertial subrange region.
Mathematical and physical aspects of implicit sub grid scale modelling using nonlinear �ux-limiters are
conveniently addressed using the modi�ed LES-equation formalism. In this study, the performance of
MILES is demonstrated as a function of the �ux-limiting scheme in selected representative case studies.
Published in 2005 by John Wiley & Sons, Ltd.
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BACKGROUND

High Reynolds (Re) number turbulent �ows are of considerable importance in many �elds of
engineering, geophysics, and astrophysics. Capturing the dynamics of all relevant scales based
on the numerical solution of the Navier–Stokes (NS) equations constitutes direct numerical
simulation (DNS), which is prohibitively expensive for practical �ows at moderate-to-high
Re. Large eddy simulation (LES) is an e�ective intermediate approach between DNS and
Reynolds-averaged Navier–Stokes modelling, capable of simulating �ow features which cannot
be handled with RANS such as �ow unsteadiness and strong vortex–acoustic couplings.
Desirable modelling choices involve selecting an appropriate discretization of the �ow problem
at hand, such that the LES cut-o� lies within the inertial subrange, and ensuring that a smooth
transition can be enforced at the cut-o�. The main assumptions of LES are that: (i) transport
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is largely governed by large-scale unsteady features and that such dominant features of the
�ow can be resolved, and (ii) the less-demanding accounting of the small-scale �ow features
can be undertaken by using suitable sub-grid scale (SGS) models. In the absence of an
accepted universal theory of turbulence, the development and improvement of SGS models
are unavoidably pragmatic and based on the rational use of empirical information. Classi-
cal approaches have included many proposals ranging from inherently limited eddy-viscosity
formulations to more sophisticated and accurate mixed models, see e.g. Reference [1] for a
recent survey. The main drawback of mixed models relates to their computational complexity,
and ultimately, to the fact that well-resolved (discretization-independent) LES is prohibitively
expensive for the practical �ows of interest at moderate-to-high Re.
Recognizing the aforementioned di�culties but also motivated by new ideas pioneered by

Boris and collaborators [2], several researchers have abandoned the classical LES formulations
and started employing the un�ltered �ow equations instead of the �ltered ones. Major focus
of the new approaches [3] has been on the inviscid inertial-range dynamics and regularization
of the under-resolved �ow, based on ab initio scale separation with additional assumptions for
stabilization, or applying monotonicity via nonlinear limiters that implicitly act as a �ltering
mechanism for the small scales—the original proposal of Boris et al. [2]. The latter concept
goes back to the 1950s to von Neumann and Richtmyer [4], who used arti�cial dissipation
to stabilize �nite-di�erence simulations of �ows involving shocks. This arti�cial dissipation
concept also motivated Smagorinsky [5] in developing his scalar viscosity concept based up
on the principles of similarity in the inertial range of 3D isotropic turbulence.
In what follows, we use the modi�ed equation formalism to carry out a formal compara-

tive analysis of conventional LES and MILES. The performance of MILES is examined for
selected representative case studies to demonstrate MILES dependence on the �ux-limiting
speci�cs. We conclude by pointing out some outstanding open issues of the implicit LES
(ILES) concept.

CONVENTIONAL LES

For simplicity, we restrict the discussion to incompressible �ows described by the NS
momentum balance equation, @t(v) + ∇·(v⊗ v)=−∇p + ∇·S, in conjunction with the in-
compressibility (or divergence) constraint ∇·v=0, where ⊗ denotes the tensorial product,
and S=2�D and D= 1

2 (∇v + ∇vT) are the viscous-stress and strain-rate tensors. The con-
ventional LES procedure [1] involves three basic ingredients: (i) low-pass �ltering, (ii) �nite
volume, element or di�erence discretization, and (iii) explicit SGS modelling to close the
low-pass �ltered equations. Applying (i) and (ii) to the NS equations—using a second-order
accurate �nite volume algorithm, and rewriting the results in terms of the modi�ed equations
(ME), i.e. the equations satis�ed by the numerical solutions being actually calculated, yields
[6, 7]

@t(�v) +∇·(�v⊗ �v)=−∇�p+∇· �S− ∇·B+m� + �
where B= v⊗ v− �v⊗ �v, m�=[G∗;∇](v⊗ v+pI−S), �=∇·[[ 16 �∇3v− 1

8 ∇2v](d⊗ d)+ · · ·] are
the SGS stress tensor, commutation error term, and the total (convective and viscous) trunca-
tion error, respectively. Here, I is the unit tensor and d is the topological vector connecting
neighbouring control volumes, and, [G∗;∇]f=∇f−∇ �f. The commutation error term is often
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lumped together with the SGS force ∇·B, prior to modelling, and hence a generalized SGS
stress tensor B needs to be prescribed in terms of discretized �ltered �elds for closure of the
new equations—which constitutes (iii) above.

IMPLICIT LES

A key self-consistency issue required in the conventional LES approach involves separating
the computing e�ects of its three basic elements: �ltering, discretization, and reconstruction.
Filtering and reconstruction contributions must be resolved, i.e. their e�ective contributions in
the ME above must be larger than the total truncation error �. Also, the interactions of their
upper range of represented (but inaccurate) scales must be addressed—in addition to those
between resolved and SGSs. However, we could argue that discretization could implicitly
provide B if nonlinear stabilization can be achieved algorithmically via a particular class of
numerical algorithms or based on regularizing the discretization of the conservation laws. In
fact, the ME suggest that most schemes can potentially provide built-in or implicit SGS models
enforced by the discretization errors � provided that their leading order terms are dissipative.
We are thus led to the natural question: to what extent can we avoid the (explicit) �ltering
and modelling phases of LES and focus on the implicit B provided by a suitably chosen
discretization scheme?
Not all implicitly implemented SGS models are expected to work: the numerical scheme

has to be constructed such that the leading order truncation errors satisfy physically required
SGS properties, and hence nonlinear discretization procedures will be required here. The
analogy to be recalled is that of shock-capturing schemes designed under the requirements
of convergence to weak solution while satisfying the entropy condition [8]. Non-oscillatory
�nite-volume (NFV) algorithms can be viewed as relevant for ILES of turbulent �ows based
on nonlinear implicit SGS modelling [7, 9], if we focus on two distinct inherent physical SGS
features to be emulated:

• the anisotropy of high-Re turbulent �ows in the high-wave number end of the inertial
subrange region, characterized by very thin �laments of intense vorticity and largely
irrelevant internal structure, embedded in a background of weak vorticity, e.g. Reference
[10],

• the discrete nature of laboratory observables (�nite �uid portions transported over �nite
periods of time are always measured).

We thus require that ILES be based on NFV numerics having a sharp velocity-gradient
capturing capability operating at the smallest resolved scales. By focusing on the inviscid
inertial-range dynamics and on adaptive regularization of the under-resolved �ow, ILES thus
follows very naturally on the historical precedent of using these kinds of schemes for shock
capturing—in the sense that requiring emulation (near the cut-o�) of the high wave number
end features of the inertial subrange region of turbulent �ows is analogous to spreading the
shock width to the point that it can be resolved by the grid.
An intriguing MILES feature is the convection discretization that implicitly generates a

nonlinear tensor-valued eddy-viscosity, which acts predominantly to stabilize the �ow and
suppress unphysical oscillations. The ME analysis of MILES [7] draws on the fact that
FV methods �lter the NSE over non-overlapping computational cells �P with the typical
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dimension |d|. In the �nite-volume context, discretized equations are obtained from the NS
equations using Gauss’ theorem and by integrating over time with a multistep method. To
close the discretization equations, interface �uxes need to be reconstructed from the depen-
dent variable values at adjacent cells. The methods available for constructing implicit SGS
models by means of the leading order truncation errors are generally restricted to nonlinear
high-resolution methods for the convective �uxes (at least second-order accurate on smooth
solutions while giving well-resolved, non-oscillatory discontinuities) [8]. In addition, these
schemes are required to provide a leading order truncation error that vanishes as d→ 0 so
that it remains consistent with the NS equations and with conventional LES models. We focus
here on certain �ux-limiting and correcting methods.
To this end, we introduce a �ux-limiter � that combines a high-order convective �ux-

function vHf that is well-behaved in smooth �ow regions, with a low-order dispersion-free
�ux-function vLf , being well-behaved near sharp gradients, so that the �ux-function becomes
vf = vHf − (1−�)[vHf − vLf ]. Choosing the particular �ux-limiting scheme also involves speci�c
selections for vLf and v

H
f . In our ME analysis involving second-order �uxes [7], v

H
f and v

L
f

have been assumed to be based on linear interpolation and upwind-biased piecewise constant
approximation, respectively. Comparing the resulting ME [7] with the corresponding analysis
of the momentum equation in the framework of the conventional LES approach suggests that
the MILES ME incorporate additional dissipative and dispersive terms, and we can consistently
identify the leading order convective truncation error terms, as providing the implicit SGS
stress terms B=C(∇v)T + (∇v)CT + �2(∇v) d⊗ (∇v) d, where C= �(v⊗ d) is a generalized
eddy viscosity and �= 1

2 (1− �)(�− − �+), with �±= 1
2 (vf dA ± |vf dA|)=|vf dA|.

The implicit SGS stress tensor B can be decomposed into B(1) =C(∇v)T + (∇v)CT and
B(2) = �2(∇v) d⊗ (∇v) d, in which the former is a tensor-valued eddy-viscosity model, while
the latter is of a form similar to a structural type (e.g. scale similarity) model [1]. The inher-
ently dissipative nature of this implicit SGS model has been demonstrated in Reference [6]
based on analysis of its associated e�ective viscosity. Detailed properties of the implicit SGS
model are related to the �ux-limiter � and to the choice of low- and high-order schemes; they
also relate as well to other speci�c features of the scheme—e.g. monotonicity, l1-contraction,
local monotonicity preservation, and gridding. We have illustrated above and discussed else-
where [6, 7], how some of these properties can directly a�ect the implicit SGS modelling
e�ectiveness in the MILES context. MILES performance as a function of �ux limiter is
discussed below.

MILES BASED ON ONE-DIMENSIONAL FLUX-LIMITING

Here we address e�ects of variations in the use of one-dimensional (1D) �ux-limiter �. We
�rst consider high-resolution schemes that can be formulated using the ratio of consecutive
gradients, r= �vnP−1=2=�v

n
P+1=2 = (v

n
P − vnP−1)=(v

n
P+1 − vnP). Examples of �ux-limiters that �t into

this category are (1) the minmod limiter �= max(0;min(1; r)) [11], (2) the superbee limiter,
�= max(0;max(min(2r; 1), min(r; 2))) [11], (3) the van-Leer limiter, �= (r + |r|)=(1 + |r|)
[11], (4) the van-Albada limiter, �= (r + r2)=(1 + r2) [12], and (5) the GAMMA limiter
�= (1− k)=kr[�(r)− �(r − (k=(1− k)))] + �(r − (k=(1− k))) [13], where k is a parameter of
the scheme such that k ∈ [0; 1], and � is the Heavyside function. Note that when k=0:5, this
scheme becomes total variational diminishing (TVD).
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Figure 1. MILES of Ret =590 channel �ow; dependence on choice of �ux-limiter at the 603 grid;
y+ = �=u� is the wall normal co-ordinate.

Some of these limiters can be e�ectively compared in terms of Sweby diagrams [14],
plotting the TVD constraint TV(vn+1)6TV(vn), where TV(vn)=

∑
P ‖vnP+1−vnP‖, reformulated

as 06|�(r);�(r)=r|62 [11]. From this perspective, the e�ective di�usivity of the schemes
decreases as the �ux-limiters approach that of the superbee limiter, which results in the least
di�usive scheme. We can also consider other schemes, such as �ux corrected transport (FCT)
[15], and piecewise parabolic method (PPM) [16], which can also use a similar �ux-limiting-
type formalism based on vf = vHf −(1−�)[vHf −vLf ], but for which the �ux limiter cannot simply
be formulated in terms of the ratio of consecutive gradients, r. The latter schemes are locally
monotonicity-preserving, i.e. given the solution vn+1P =H (vnP−k ; v

n
P−k+1; : : : ; v

n
P+k), if v

0
P¿v

0
P+1,

then vnP¿v
n
P+1 for all P and n. Being less di�usive, schemes based on local constraints are to

be preferred for MILES.
The global performance of MILES as a function of �ux-limiter is documented in Figure 1,

showing studies of fully developed turbulent channel �ow at a friction-velocity based Re of
Ret =590, compared with DNS results [17]. The channel has a length of 6h and a width of 3h
and is con�ned between two parallel plates 2h apart, where h is the channel half-width. The
�ow is driven by a �xed mass �ow in the streamwise (ex) direction. The friction velocity is
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u�=
√
�w, where �w is the wall-shear stress. We vary the mass �ow to obtain the target friction-

velocity-based Re. Other speci�cs of the channel �ow calculations are discussed in detail
elsewhere (e.g. Reference [7]); the simulations were carried out on 603 and 483 grids. The grid
consists of uniform spacing in the streamwise and spanwise directions, whereas geometrical
progression in the ey-direction is used to appropriately cluster the grid near the walls to resolve
the velocity gradients with uniform spacing in the streamwise and spanwise directions. Periodic
boundary conditions are employed in both streamwise and spanwise directions, together with
no-slip conditions in the wall-normal directions. In all calculations, a wall-model [18] is used
to emulate the near-wall features that cannot be resolved on the grid.
Figure 1(a) shows the main �ow features of the channel �ow in terms of vortex lines,

contours of vx − 〈vx〉 on the side and contours of v at the bottom, and isosurfaces of the
second invariant of the velocity gradient Q=1=2(‖W‖2 − ‖D‖2). Q shows, together with
the v-contours, that the �ow is dominated by wall-shear-induced vortical structures.
Figures 1(b)–(d) show the time-averaged streamwise velocity 〈vx〉 (integrated over x and
z), the resolvable axial rms-velocity �uctuation v′+x = v

′
x=u�, where v

′
x=

√〈(vx − 〈vx〉)2〉, and
the resolvable shear stress Rxy= 〈v′xv′y〉, respectively, for di�erent implicit sub-grid models
based on the FCT, van-Leer, van-Albada and GAMMA limiters, respectively. The agree-
ment between MILES, DNS data, and conventional LES results (using the one equation eddy
viscosity model, OEEVM) is generally good, with the most apparent deviations found in
the resolved axial rms-velocity �uctuation. Moreover, the log-law, 〈vx〉+ =�−1 ln(y+) + B, is
generally well-predicted with B≈ 5:2± 0:1 and �≈ 0:41± 0:01. The in�uence of the �ux lim-
iter is comparatively small but has been observed to be sensitive to the wall-normal resolution
(cf. References [7, 18]). From Figure 1 it is evident that the van-Leer limiter is too di�usive,
producing poor velocity pro�les, while both FCT and GAMMA produce velocity pro�les that
agree well with the reference DNS data.

MILES BASED ON MULTI-DIMENSIONAL FLUX-LIMITING

FCT was originally developed to accurately solve the conservation equations of Eulerian �uid
dynamics without violating the positivity of mass and energy, particularly in the vicinity
of shock waves and other discontinuities [15]. The goal of the �ux-correction procedure is
to provide as accurate a solution to the original equation as is consistent with maintaining
positivity and local monotonicity everywhere. For certain multi-dimensional applications, this
limiter and its underlying integration scheme can be employed in a serial fashion to each of the
co-ordinate directions in turn, using operator splitting. Other problems, however, call for a fully
multi-dimensional approach. These include both incompressible or nearly incompressible �ows,
and �ows with a high degree of symmetry. Zalesak [19] analysed Boris and Book’s 1D FCT
limiter [15], identi�ed the tests inherent in it, and showed why a reformulation was needed
to extend the FCT approach to multi-dimensional situations. He provided such a formulation,
showed that his new limiter could be made equivalent to the original, and then illustrated
it with several one- and two-dimensional examples. Usage of this FCT limiter has shown
that it preserves positivity but not monotonicity, yielding solutions with numerical ripples
of signi�cant amplitude in many cases; an e�ective modi�cation of Zalesak’s limiter, which
contributes greatly towards preserving monotone pro�les, was introduced through the addition
of a prelimiting step based on the original 1D limiter, thus ensuring that both positivity (when
required) and monotonicity of the solutions are locally preserved [20].
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Figure 2. Self-deformation, reconnection, and subsequent bifurcation of an isolated vortex ring are
shown. The ring is pu�ed from a Mach 0.6 air jet whose aspect ratio is 4:1. Isosurfaces of the vorticity
magnitude are shown at 15% of the peak initial vorticity. Time increases from left to right and from
bottom to top in the �gure: (a) used Zalesak’s �ux limiter, which preserves positivity but not mono-
tonicity; and (b) used the monotone �ux limiter, which involves a prelimiting step using (monotonicity

preserving) 1D FCT in each cross-stream direction.

Figure 2 illustrates the e�ectiveness of these multi-dimensional limiters in the context
of MILES of a subsonic rectangular jet [21, 22]. An initially laminar air jet at standard
temperature and pressure issues from a rectangular nozzle of aspect ratio 4:1 at Mach 0.6.
The quiescent background gas also is at STP. In order to focus on the dynamics of the indi-
vidual vortex rings of the jet, an isolated ring is pu�ed out by closing o� the in�ow boundary
after a �nite time equal to the ratio of the jet equivalent diameter to the �ow speed. The
evolution of the ring is then followed as it convects downstream. The key underlying aspects
of the vortex ring bifurcation process were �rst demonstrated with MILES [21], including
self-induced deformation, reconnection, bridging and threading—mechanisms which could not
be captured by the laboratory visualizations.
The numerical studies used 2D FCT in the cross-stream planes and a 1D FCT [15]

for the streamwise direction. A 150× 110× 110 grid was used to represent the domain, with
the cells evenly spaced in the shear-�ow region of the jet and geometrically stretched in the
cross-stream directions outside. The Courant number was 0.5. Fixed mass density and ve-
locity conditions were speci�ed on the boundary cells de�ning the jet ori�ce, with free-slip
conditions enforced elsewhere on the entrance plane. Convective conditions were imposed on
those quantities at the out�ow boundary, and all variables satisfy stagnation-�ow conditions
at the cross-stream boundaries. The pressure satis�es the inviscid 1D pressure equation at the
jet ori�ce and a non-re�ecting condition at the out�ow boundary.
Time sequences of isosurfaces of the vorticity magnitude are shown in Figure 2, obtained

using Zalesak’s limiter and the monotone limiter in the 2D FCT module. In the �gures, time
increases from left to right and from bottom to top. The bottom-most six frames in each
�gure show the self-induced deformation and axis switching of the vortex ring. The highly
curved corners accelerate ahead of the ring sides and towards the centreline, pulling the minor
axis sides along with them. This process bends the ring along its major axis. The increasing
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curvature at the midpoints of the major sides accelerates those portions streamwise towards
the leading minor sides but away from the jet centreline. This results in a nearly planar,
axis-switched con�guration of the vortex ring at frame 6. This early evolution is essentially
identical in the two cases, save for some intermittent, small-scale, numerical features evident
with Zalesak’s limiter.
Subsequently, the ring’s new major sides pinch together and reconnect, forming a pair of

vortex rings linked on the underside by two thin threads. This is shown in the following (top)
four panels of Figure 2. While both simulations clearly show the bifurcation of the ring, the
�ne structure associated with the threads bridging the two daughter rings increasingly di�ers
between the two limiters. Zalesak’s limiter permits �uctuations on the threads of vorticity,
which show up as spikes attached to the isosurfaces and lead at frame 12 to the fragmenting
of the threads, and (as suggested in Figure 2(a)) the two daughter vortex rings irrevocably
separate at later times. In contrast, with the monotone 2D limiter the �ne structure is cleanly
and clearly represented through frame 12, the vorticity threads remain intact, and the daughter
rings stay in close proximity to one another, leading to signi�cantly di�erent later vortex
dynamics [21]. This example dramatically demonstrates that the dynamical behaviour of the
system, above and beyond the aesthetics of the simulation results, can be in�uenced signif-
icantly by the implicit SGS model associated with the �ux limiter speci�cs. Studies testing
various di�erent �ux-limiting approaches in the context of canonical benchmark problems are
reported separately [23].

OUTLOOK

MILES seeks to emulate the �ow features in the high-wave number end of the inertial
subrange of turbulent �ows—characterized by thin �laments of intense vorticity embedded
in a background of weak vorticity. We have proposed that emulation of the latter feature
be the requirement for the more general concept of nonlinear implicit SGS modelling in the
context of �nite-volume formulations. In the more general ILES approach thus de�ned, the
functional reconstruction of the convective �ux functions is carried out via high-resolution
nonlinear FV schemes incorporating a sharp velocity-gradient capturing capability operating
at the smallest resolved scales. By focusing on the inviscid inertial-range dynamics and on
regularization of the under-resolved �ow, ILES follows up very naturally on the historical
precedent of using this kind of numerical schemes for shock-capturing.
In MILES, the e�ects of SGS physics on the resolved scales are incorporated in the

functional reconstruction of the convective �uxes using locally-monotonic methods. Analy-
sis based on the modi�ed equations shows that MILES, based on a particular class of �ux-
limiting schemes, provides an implicitly implemented anisotropic SGS model dependent on
the speci�cs of the particular numerical scheme—i.e. on the �ux-limiter �, on the choice of
low- and high-order schemes, and on the gridding. Selected representative case studies were
used here to demonstrate the dependence of the MILES performance on �ux-limiting speci�cs,
suggesting the important role of local monotonicity preservation, and indicating that local (vs
non-local TVD) constraints are to be preferred.
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